(3125)^2=2x^2

Simple and best practice solution for (3125)^2=2x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3125)^2=2x^2 equation:



(3125)^2=2x^2
We move all terms to the left:
(3125)^2-(2x^2)=0
We add all the numbers together, and all the variables
-2x^2+9765625=0
a = -2; b = 0; c = +9765625;
Δ = b2-4ac
Δ = 02-4·(-2)·9765625
Δ = 78125000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{78125000}=\sqrt{39062500*2}=\sqrt{39062500}*\sqrt{2}=6250\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6250\sqrt{2}}{2*-2}=\frac{0-6250\sqrt{2}}{-4} =-\frac{6250\sqrt{2}}{-4} =-\frac{3125\sqrt{2}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6250\sqrt{2}}{2*-2}=\frac{0+6250\sqrt{2}}{-4} =\frac{6250\sqrt{2}}{-4} =\frac{3125\sqrt{2}}{-2} $

See similar equations:

| 3(x=5)=32 | | 36=20-8x | | 30=5(x-9) | | 3x+5x+x=72 | | 9-5y=39 | | 3x+5x+x=9x | | X=99-8x | | 168=-12(x+12 | | 4x(22)=108 | | 2a+1a=4+a | | 3x+10+4x=7x-8 | | 1+2a+-1=4a+-1a | | y•6.2=31 | | 12x–2–4=–3–4–4 | | 16x+3–4–2=–4–2 | | 4x=-17+40-5 | | 2x+13+4x-7=180 | | 23+10=x | | 2.2-m=3.5 | | 8x-24=4x-6 | | 43+(x=7)=90 | | x+5=90+(2x-2) | | 3x^2+30x=-36 | | 3x^2+3x=-36 | | 4x+188=6x216 | | 3(x+1)=-30# | | 6=12=3y | | (3x-1)=90+31 | | y−58=22 | | (36-x)+7x=180 | | 5x^2+9=4 | | x+(x*0,19)=257,60 |

Equations solver categories